๐๐ผ๐ ๐๐ผ ๐ฌ๐ผ๐ ๐๐ฎ๐ป๐ฑ๐น๐ฒ ๐ฆ๐ธ๐ฒ๐๐ฒ๐ฑ ๐๐ฎ๐๐ฎ ๐ถ๐ป ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ?
This is a critical PySpark interview question! Hereโs the breakdown:ย
โ
๐ช๐ต๐ฎ๐ ๐ถ๐ ๐ฆ๐ธ๐ฒ๐๐ฒ๐ฑ ๐๐ฎ๐๐ฎ?
– Skewed data occurs when some partitions have ๐๐ถ๐ด๐ป๐ถ๐ณ๐ถ๐ฐ๐ฎ๐ป๐๐น๐ ๐บ๐ผ๐ฟ๐ฒ ๐ฑ๐ฎ๐๐ฎ than others, leading to inefficient resource usage and slower processing.ย
โ
๐๐ผ๐ ๐๐ผ ๐๐ฎ๐ป๐ฑ๐น๐ฒ ๐ฆ๐ธ๐ฒ๐๐ฒ๐ฑ ๐๐ฎ๐๐ฎ:ย
1. ๐ฆ๐ฎ๐น๐๐ถ๐ป๐ด: Add a random prefix to keys to distribute data more evenly.ย
2. **๐๐๐๐๐ผ๐บ ๐ฃ๐ฎ๐ฟ๐๐ถ๐๐ถ๐ผ๐ป๐ถ๐ป๐ด**: Use a custom partitioner to balance the load.ย
3. ๐๐ฟ๐ผ๐ฎ๐ฑ๐ฐ๐ฎ๐๐ ๐๐ผ๐ถ๐ป๐: For small skewed datasets, use broadcast joins to avoid shuffling.ย
4. ๐ฅ๐ฒ๐ฝ๐ฎ๐ฟ๐๐ถ๐๐ถ๐ผ๐ป๐ถ๐ป๐ด: Use ๐๐๐๐๐๐๐๐๐๐๐() to increase the number of partitions and reduce skew.ย
Example (Salting):ย
๐๐๐๐โ๐๐ข๐๐๐๐๐.๐๐๐.๐๐๐๐๐๐๐๐๐โ๐๐๐๐๐๐โ๐๐๐,โ๐๐๐๐๐๐,โ๐๐๐,โ๐๐๐๐โโ
#โ๐ฐ๐๐โ๐โ๐๐๐๐๐๐โ๐๐๐๐โ๐๐โ๐๐๐โ๐๐๐ขโโ
๐๐_๐๐๐๐๐๐โ=โ๐๐.๐ ๐๐๐๐ฒ๐๐๐๐๐(“๐๐๐๐๐๐_๐๐๐ข”,โ๐๐๐๐๐๐(๐๐๐(“๐๐๐ข”),โ๐๐๐(“_”),โ(๐๐๐๐()โ*โ๐ท๐ถ).๐๐๐๐(“๐๐๐”)))โโ
#โ๐ฟ๐๐๐๐๐๐โ๐๐๐๐๐๐๐๐๐๐โ๐๐โ๐๐๐โ๐๐๐๐๐๐โ๐๐๐ขโโ
๐๐๐๐๐๐โ=โ๐๐_๐๐๐๐๐๐.๐๐๐๐๐๐ฑ๐ข(“๐๐๐๐๐๐_๐๐๐ข”).๐๐๐๐๐()โโ
๐ฃ๐ฟ๐ผ ๐ง๐ถ๐ฝ: Monitor your Spark UI to identify skewed partitions and apply the right strategy!ย
Whatโs your go-to method for handling skewed data? Share your tips below! ๐ย
#PySpark #DataEngineering #InterviewPrep #BigData #TechTipsย